Saúl Cano-Ortiz es graduado en Física y ha entrenado este modelo recorriendo, con un dron anclado a su coche, las carreteras de Cantabria
14 de febrero de 2024
Saúl Cano-Ortiz es graduado en Física por Universidad de Alicante (UA), ha realizado el máster de
Data Science (Ciencia de Datos, UIMP-UC), tiene 25 años, y ha estado los tres últimos inmerso en su tesis doctoral sobre el desarrollo de
un modelo de inteligencia artificial capaz de detectar el pavimento deteriorado, o próximo a deteriorarse. El punto de partida de su investigación: aplicar la ciencia de datos a necesidades en ingeniería civil.
“Llegué al Grupo GITECO (Grupo de Investigación de Tecnología de la Construcción) y me dijeron que buscara una necesidad, estuve unos meses investigando y llegué a este problema: tratar de mejorar el estado actual del mantenimiento de las carreteras mediante IA”, explica Cano-Ortiz.
Bajo la dirección de
Pablo Martínez y
Lara Lloret, investigadores del Instituto de Física de Cantabria (IFCA, CSIC-UC) y
Daniel Castro-Fresno (GITECO -UC), y con la colaboración de
Pedro Lastra-González (GITECO -UC), lo que propone el físico es el diseño de un
dispositivo de adquisición de imágenes de bajo coste, que se adapte a cualquier vehículo, y cuyo sistema de visión artificial, basado en un modelo de aprendizaje profundo (deep learning), sea
capaz de
detectar, localizar, y clasificar automáticamente los diferentes tipos de defectos existentes en las carreteras.
Además, han creado
MAPSIA, un software basado en
un visor a modo de Google Maps, que muestra el estado de las carreteras a nivel nacional y local, y financiado por el programa
Next Generation del Ministerio de Ciencia.
“MAPSIA en un sistema de visión artificial que consigue detectar de manera automatizada los defectos en la carretera, para promover un mantenimiento de carreteras inteligente, ahorrar costes, y facilitar la monitorización del estado del pavimento”, afirma Cano-Ortiz.
“Es una especie de Google Maps, pero no va orientado a llevarte, si no que, mediante IA, te permite saber cual es el estado o la condición del pavimento para que nuestras carreteras sean más seguras”, añade.
Los resultados de este estudio se han publicado en las revistas científicas
Construction and Building Materials y
Developments in the Built Environment.

Saúl tiene 25 años y ha estado trabajando los tres últimos en su tesis doctoral que aúna ciencia de datos e ingeniería civil. / IFCA Comunicación
Recorriendo las carreteras de Cantabria
El investigador colocó un dron en la parte trasera de su coche y con él recorrió las carreteras de Cantabria durante varios meses. Ahí comenzó el trabajo de campo. “Fui grabando vídeos con la cámara del dron anclado al coche y luego esos vídeos los he separado en imágenes, que son las que han alimentado al modelo para detectar los defectos superficiales en la carretera”, explica. Además, los vídeos se han etiquetado manualmente por parte de expertos en pavimentos de la UC.
Y una vez entrenado, el modelo es capaz de
detectar, clasificar y localizar distintos defectos de la carretera,
como fisuras o baches. “Aprende la relación entre la imagen, dónde encontrar el defecto de la carretera, y qué tipo de defecto es”, explica Cano-Ortiz.
Sistema automático, escalable, barato y fácil de usar
Actualmente,
este tipo de tarea de monitorización del estado del pavimento se realiza de forma visual, lo que implica el desplazamiento de personal en un vehículo especializado equipado con varios sensores, “resultando a largo plazo una tarea poco eficiente, debido a la extensión de los pavimentos y al precio de los vehículos. Algo que, por supuesto, ni siquiera ocurre en países en vías de desarrollo”, afirma el físico.
“El nuestro es un sistema automático, escalable, barato y fácil de usar, y nos dirigimos a las administraciones públicas de conservación de carreteras, o las empresas que tienen una sección de conservación de las mismas”, comenta.

El dron con el que el investigador ha grabado las carreteras para entrenar el modelo. / IFCA Comunicación
Evitar futuros accidentes de tráfico
Otro de los
principales beneficiarios de esta iniciativa son los propios conductores/as, ya que, como explica el investigador, “si hay defectos, la probabilidad de atasco y accidente es mayor, porque se suele reducir la velocidad o esquivar deterioros, por ejemplo, en el caso de baches para motoristas", por tanto el modelo implicaría “más seguridad, más confort de conducción y menos atascos”.
“Si yo sé donde urge más reparar, tomo una mejor decisión, y como reparo con antelación, gasto menos dinero”, sostiene el investigador. Además, las técnicas de mantenimiento preventivo “tienen un
menor impacto medioambiental, que las de mantenimiento correctivo”, concluye.
Ahora Saúl viajará a Aachen (Alemania) para finalizar su doctorado en la Universidad Técnica de Hagen (RTWH University), y espera volver a Cantabria con una mayor experiencia para aplicarla a su modelo de diagnóstico de carreteras.
Rebeca García / IFCA Comunicación